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Towards a computational chemical potential for nonequilibrium steady-state systems
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We explore an approach to derive a computable chemical potential analog for thermostatted steady-state
systems arbitrarily far from equilibrium. Although our method is not rigorous, it is based on theoretical and
numerical evidence and exploits analogies with Widom’s method widely used in computer simulations of
equilibrium fluids. We obtain two formulas, one for steady states and one for the transient region. Despite
being analogous to the equilibrium expression, the steady-state formula can only be used for approximate
calculations. Possessing less obvious characteristics, we present representative calculations for the transient
approach and discuss its numerical feasibility.@S1063-651X~99!04511-0#

PACS number~s!: 05.60.2k, 45.05.1x, 51.10.1y
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I. INTRODUCTION

There is an ongoing effort to establish statistical mech
ics for nonequilibrium steady-state~NESS! fluids similar to
the Gibbsian ensemble theory for equilibrium systems@1–3#.
The need for such a theory is especially great in comp
simulations when a system is modeled in atomic or mole
lar detail. These numerical models can provide insight i
complex phenomena such as the phase separation of pol
blends under the impact of shear@4#. However, without a
microscopic theory of thermodynamic character we are
able to mimic and understand the essence of phase coe
ence in NESS. A mere extension of the rules of linear ir
versible thermodynamics beyond the linear regime is
sufficient. These rules, based on minimization of the diss
tion, are local@5#, thus, are irrelevant as global potenti
functions indicating phase stability.

Simple arguments are sufficient to make it clear w
minimal dissipationlike criteria cannot be candidates
markers for nonequilibrium phase transitions. If one has t
coexisting fluid phases in equilibrium and att50 turns on a
weak, time-independent dissipative field~for instance,
charged particles in homogeneous electric field! the proper-
ties of the phase coexistence will not change considerablIf
the coexistence properties were determined by the minim
of the entropy production, for instance, there should be
relationship between the zero field transport coefficients
the two phases and the corresponding chemical potent
since the dissipation of each phase is proportional to
transport coefficient related to the dissipative field. Theref
the weighted sum of the relevant transport coefficients
phase balance should be a minimum with respect to the s
sum in other states of the system at the given macrosc
constraints. This condition should hold for all types of po
sible transports and all types of phase transitions. Clea
this cannot be the case.

Another objection against the application of exclusive
dissipation-based extremum principles for phase coexiste
applies also beyond the linear regime of one-component
PRE 601063-651X/99/60~5!/5522~6!/$15.00
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tems. The minimum of the entropy production~or any other
analog of it! would require identical dissipation per partic
in the coexisting phases. If the dissipation of the two pha
were different the extremum condition would act to decre
the amount of the more dissipative phase. This would le
either to the annihilation of one of the phases or~if it were
possible! to two phases with equal dissipation per particleIf
such extremum principles were applicable in a vapor-liqu
coexistence, for instance, any dissipative field, no matter ho
small, would annihilate the gas phase entirely.

It appears that returning to the concepts of equilibriu
thermodynamics might yield a solution. The task is to find
generalized expression for the chemical potential which
valid under the usual circumstances of nonequilibrium m
lecular dynamics~NEMD! simulations, i.e., in homogeneou
steady state systems with acting external field and a synth
thermostat@2#. Although these models are artificial due
the presence of the numerical feedback removing the d
pative heat instantaneously, they are well-defined and w
studied systems. Any advance in the theory of these mo
helps the understanding of real systems.

The chemical potential, being a derivative of the entro
is expected to be less controversial than the entropy its
~Even if the NESS entropy does not have a well-defined
unique value, its partial derivatives might have such prop
ties@6#.! Still, determination of such a quantity appears pro
lematic because all the direct equilibrium methods, wh
might serve as analogies, directly sample the phase spa
the system. Since the phase space distribution function
NEMD model is a fractal quantity, one might face insu
mountable barriers.

In Sec. II we derive a formally simple expression of
chemical potential analog~CPA!. The derivation relies on
the recently performed numerical experiments of Evans
Searles@7#. Then in Sec. III we discuss an alternative de
vation which, at first glance, might seem more attractive. T
latter approach is not entirely new. Several years ago
performed calculations based on similar ideas@8#. In those
calculations, however, we used the equilibrium technique
5522 © 1999 The American Physical Society
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PRE 60 5523TOWARDS A COMPUTATIONAL CHEMICAL POTENTIAL . . .
a NESS system of hardcore particles knowing that the re
can only be an approximation to the actual value. Here,
perform a systematic derivation but present no representa
calculations for the method, because we have no refere
data to check the accuracy of the results. However, in S
IV, we present simulation results using the formula of S
II. Interestingly, this formula does not require stochas
sampling of the system but does rely on having good sta
tics and numerical integration. In Sec. V we present our c
clusions.

II. CPA EXPRESSION FROM THE TRANSIENTS

We adopt an approach similar to the thermostatted n
linear response theory of Evans and Morriss developed
NEMD models @2,7#. These theories start with the form
solution of the Liouville equation. Beforet50 the system
can be characterized by the canonical distribution functi
This distribution is propagated forward in time taking in
account the impact of the steady external field turned on
t50 @2,7#.

For t>0 the equations of motion are

q̇i5
pi

m
1CiFe

ṗi5Fi1DiFe2api , ~1!

whereqi , pi are the position and momentum of particlei , Fi
is the Newtonian andFe is the external force, andCi ,Di are
phase functions that describe the coupling of the exte
field to the system. The dissipative fluxJ~G! is defined in
terms of the unthermostatted time derivative of the inter
energy

Ḣ~G![2J~G!Fe ~2!

where G[(q1 ,q2 ,...,qN ,p1 ,p2 ,...,pN) is a point in phase
space. If our thermostat is an ergostat, i.e., the feedback
strains the internal energy to a constant, the instantane
value ofa is

a5
2J•Fe

S~pi
2/m!

. ~3!

It is well-established that in NESS the overwhelming m
jority of the observed trajectory segments are entropy
creasing@9#. In such cases a phase-space volume elemes
shrinks exponentially@7#:

s„G~ t !…5s„G~0!…expH 2E
0

t

3Na@G~s!#dsJ . ~4!

It has been shown recently that the shrinkage of a ph
space volume element is correctly described by the diss
tion integral in Eq.~4! at least for times shorter than th
characteristic time-correlation length of the dissipative p
cess@7#.

NEMD models are well-defined NESS systems with we
defined means and fluctuations. Our present model ob
strict energy conservation. Due to the definition of the
gostat in Eq.~3! this condition is maintained not only in th
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transition period but in the infinite time limit of the stead
state as well. We have essentially zero probability
especially for strong external fields typical i
simulations—to observe entropy decreasing trajectory s
ments @9#. If we want to estimate a microcanonical-typ
probability of finding our NESS system in a single point
phase space, we can take the product of the starting equ
rium distribution function and the rate of shrinkage of t
phase space. Following Eq.~4!, the shrinkage rate can b
estimated as follows:

f N„G~ t !…5 f N„G~0!…expH 23NE
0

t

a~s!dsJ ~5!

where the subscriptN refers to the number of particles in th
system.

The exponential shrinkage of the phase-space volume
ement is a manifestation of the dimensional contraction
the distribution function@10#. This fractal behavior raised
concerns regarding the nonanalytic nature of the distribu
function @11#. In addition to the nonanalitic behavior th
phase-space volume of the strange attractor in the infi
time limit is inaccurate because of the finite memory cau
by Lyapunov instability. In addition to these difficulties, th
norm of Eq. ~5! is a function of time. After a short initial
period this norm becomes essentially zero. However, in
present derivation we are interested only inrelative prob-
abilities. The compared functions possess very similar pr
erties which may eventually cancel out their problema
character.

Using Eq.~5! as a probability distribution function we ca
obtain the NESS analog of the chemical potential by app
ing the so-called Widom test particle method@12# well-
known in the computer simulation methodology of equili
rium systems@15#. The idea of this derivation is to define th
position of particleN11 as the origin of the system, the
integrate out the three position variables from the canon
partition function.

2bm5S ]bA

]N D
V,b

5bA~N11,V,b!2bA~N,V,b!

52 lnF S h23

N11D *dGN11exp~2bHN11!

*dGNexp~2bHN! G
5bm id2 ln^exp~2bf!& ~6!

where A is the Helmholtz function, HN115HN1f
13/(2b). The first term on the right-hand side of Eq.~6! is
the ideal gas part of the chemical potential,bm id5 ln(rL3),
where r5N/V is the number density and L
5@(2pb\2)/m#1/2 is the de Broglie wavelength.

At this stage there are several ways to exploit the anal
with Eq. ~6!. One can estimate the CPA from sampling
NESS system represented by a NEMD simulation.~We will
turn to this in the following section.! However, from a theo-
retical point of view the most straightforward is the pictu
described in Eqs.~1!–~5!. In the latter case the result for th
chemical potential analogm* can be given as follows:
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5524 PRE 60ANDRÁS BARANYAI AND PETER T. CUMMINGS
bm* ~ t !5bm id~0!2 lnK expH 2bf~0!23E
0

t

@~N11!aN11

2NaN#dsJ L . ~7!

The only difference between Eqs.~6! and ~7! is the extra
integral in the exponent of Eq.~7!. At equilibrium the ran-
dom insertions sample states of the (N11)-particle system
from theN-particle system. In the case of simple fluids th
estimate is accurate enough to exploit for numerical calc
tions. @Unfortunately, the reverse of this approach, sampl
the N-particle phase space from the (N11)-particle one, al-
though correct in principle and more easily achieved com
tationally, is extremely inaccurate in practice.# Recently,
based on results of very accurate numerical calculatio
Evans and Searles demostrated that for finite times the
wasaki distribution preserves its norm@7#. This means that
the difference in the phase-space contractions of the two
tems is correctly represented by the integral in Eq.~7!.

The simplest way of performing the calculations is
separate the equilibrium and the switched-on nonequilibr
part of the calculations. The random insertion process p
vides a correct representation of the (N11)-particle system.
Therefore we can assume that determining thea’s of the two
systems separately, starting from their equilibrium state
correct because this is the way we move to their represe
tive NESS states.

In NESS the system is on a strange attractor in ph
space without a further loss of dimensionality. Our calcu
tion must be able to separate that part of the dissipa
which characterizes the phase-space contraction for tran
times from the permanent and~apart from fluctuations! con-
stant dissipation of the steady state. This task is more t
mere technicality~see Sec. IV!.

III. CPA EXPRESSION FOR STEADY STATES

The expression of Eq.~7! exploits the information presen
in the transition region. Considering a numerical realizat
of the Widom or test-particle method sampling of the stea
state seems a more attractive alternative. We expect to a
the explicit time dependence because macroscopic prope
of NESS systems are independent of time. In order to m
the derivation clearer we change the variable in the equa
of the partition function. Then

QN5E
2`

`

WN~E,b!exp~2bHN!dE ~8!

whereWN(E,b) is a phase-space volume defined as

WN~E,b!dE[
1

N!h3N E
E<H<E1dE

d@H~G!2E#dG. ~9!

Then the expression for the equilibrium chemical potentia
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bm52 lnK WN11~E1DE,b!

WN~E,b!

3exp@~2b~HN112HN!!#L
E,DE

. ~10!

The average in the logarithm should be taken for differenE
andDE values. We can obtain exactly the same express
for NESS systems

bm* 52 lnK WN11* ~E1DE,b!

WN* ~E,b!

3exp@2b~HN112HN!#L
E,DE

, ~11!

where the stars indicate that these quantities were meas
far from equilibrium. The reason why Eq.~11! is formally
identical with Eq.~10! follows from the energy-constraine
dynamics of Eqs.~1!–~3!. The Boltzmann-factor for the
same energy difference remains the same but the equilibr
phase-space volumes and volume ratios of the correspon
energies or energy differences will change under the imp
of the external field.

Equation ~10! can be simplified by the factorization o
WN(E,b)

WN~E,b!5
~Vh23!N

N!
WN~F!b)

i 51

N

Wi~b!p3N, ~12!

whereF is the potential energy of the system andp is the
unit of the momentum. SinceWi(b)51 for all i, we get

bm5bm id2 lnK WN11~F1f!b

WN~F!b
exp~2bf!L

F,f

.

~13!

This expression is the same as Eq.~6! with the difference
that here the averages are formed over the energy; there
the corresponding weight functions~phase-space volumes!
are shown explicitly. During an equilibrium simulatio
~Monte Carlo or molecular dynamics! the frequency with
which the system visits different regions of the phase sp
correctly represents theWN(F)b values, while simultaneous
random insertions of the test-particle estimate the pha
space volume ofWN11(F1f)b .

The simplification of Eq.~10! utilized the implicit as-
sumption that particle velocities are mutually uncorrela
and there is no correlation with the positions either. This
not true for NESS systems. If we still want to obtain a
analogous excess-chemical-potential-type expression
cannot get substantially further in simplicity from Eq.~11!.
Although the denominator values in the logarithm are rep
duced during an NEMD run, velocity-velocity and positio
velocity correlations prohibit the previous factorization. It
well-known that there are multiple collision patterns in no
equilibrium liquids at higher densities@13#.
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We performed some exploratory calculations on a Sl
system thermostatted by a Nose´-Hoover integral feedback
@2#. Distribution of the random kinetic energy is no long
isotropic

(
i

pix
2 Þ(

i
piy

2 Þ(
i

piz
2 and ^pixpiy&Þ0

in these systems. In addition to this, the total energy o
particle is correlated with its random kinetic energy. Unfo
tunately, one cannot tella priori how much of the phase
space contraction is represented by the easily calculable
particle correlations. This restricts the calculations to
approximate value, in fact, to an upper bound for the CP

To do such an approximate calculations for hard partic
reduces the complications somewhat by removing the po
tial energy. ~This was utilized in our previous study@8#.!
However, the problem of higher-order correlations applies
hard particles as well; therefore we will not discuss the
merical details of this method here.

IV. CPA CALCULATIONS FROM THE TRANSIENTS

We tested Eq.~7! using a model liquid of WCA particles
at a state point on the Lennard-Jones liquid-vapor coex
ence curve with the number density of 0.758 and the te
perature of 0.9@14#. ~Here we apply the usual reduced un
of computer simulations@15#.!

Particles of the WCA model are defined as a short-ra
version of the Lennard-Jones interaction. The pair-poten
f(r ) is also spherically symmetric, pairwise additive and
given in terms of the distance between two particlesr as
follows:

f~r !5H 4@r 2122r 26#11, r ,21/6,

0, r .21/6.

The calculations were performed using the Sllod alg
rithm of planar Couette flow@2# at the reduced shear rate
1.0. We started nonequilibrium trajectories from the equil
rium systems containingN or N11 particles at regular in-
tervals ~50 time-steps!. The length of each trajectory wa
2000 time steps. We used a fourth order Runge-Kutta in
grator for this purpose with 0.001 reduced time step. To s
computer time, after five steps we fitted a polynomial to
positions and momenta and switched to a fifth order G
integrator by determining the higher order derivatives of
predictor steps. The dissipation function recorded at e
time step was averaged for both systems. Then we de
mined the average dissipation difference according to
~7!. We had three different systems containing 32, 108,
256 particles in order to see the systematic behavior and
size-dependence of the method. The averaged values
calculated from 23105 or 13105 individual trajectories for
the 32-, 108-, and 256-particle systems, respectively.

In Fig. 1 we show enlarged curves for the thermostatt
multipliers for the three different system pairs. Systems w
N11 particles were at the target density of 0.758. The la
waves apparent in the curves are not random fluctuati
d
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They have the same characteristics for the members of e
pair and are related to the non-autonomous property of
Sllod algorithm@16#.

In Fig. 2 we show the dissipation differences for the thr
systems. Despite the 23105 individual trajectories, these
curves contain considerable fluctuations. There may also
certain amount of systematic behavior, especially in the c
of the two smaller system pairs~108-107, 32-31!. Neverthe-
less, after the reduced time of 0.7–0.8 the running integra
these curves provides a linear function which indicates t
transient effects became asymptotically weak, in practice,
reach the plateau~see Fig. 3!. We can fit of a straight line to
the long-time part of this curve. They intercept will repre-
sent the loss of the transient dissipation relative to a fict
steady state dissipation having the plateau value fromt50 ~a
Newtonian fluid without time dependence!.

A trivial way to separate the transients from the stea
state contribution is to identify the first crossing point of t
dissipation difference curve and its long-time average. T
value of the running integral at this point can be viewed
the extra contraction of the phase-space volume cause

FIG. 1. Dissipation as function of time for three system pa
~dashed lines: 31 and 32; triangles: 107 and 108; solid lines:
and 256!. The temperature is 0.9 in each system. The dens
N/V50.758, for the larger members of the pairs and (N21)/V for
the smaller members. Every quantity is given in reduced units.

FIG. 2. Dissipation differences for the three system pa
~dashed line, 32-31; triangles, 108-107; solid line, 256-255!. Da
53@(N11)^a(t)&N112N^a(t)&N#. Waves on the curves of the
smaller systems seem more systematic, while, in the case o
large system, they are merely noise.
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the presence of the extra particle. However, this method f
to explain what to do with the so-called ‘‘overshoot’’ regio
where the dissipation has higher values than its long t
average. A more reasonable but computationally simple w
is to identify the linear viscoelastic behavior of the flui
Linear effects make no contributions to changes in therm
dynamic potential functions. The simplest model for this
the Maxwell fluid in which the constitutive relation is non
Markovian but linear@2#. The transient dissipation respon
of the Maxvell fluid to a step-function strain rate can
written as

^a~ t !&5^a&~12exp@2t/tM# !, ~14!

where^a& is the t→` expectation value of the thermosta
ting multiplier andtM is the Maxwell relaxation time. Ou
choice oftM is 1/lmax wherelmax is the largest Lyapunov
exponent of the steady state system. This exponent re
sents the most unstable mode of collective motions, i.e.,
fastest relaxation in the system. In the case of weak fie
Eq. ~14! is a reasonable approximation of the tim
dependence of the average multiplier. We assume that
behavior can be extended to strong fields and must be
tracted from the total response.

An alternative argument can be given for Eq.~14! by
turning to dynamical systems theory. The ostensible pha
space-volume contraction contains a contribution which
the result of the increasingly fractal character of the ph
space of NEMD models. In addition to the real contraction
the phase space volume, this virtual contribution is alw
there; in fact, in steady state this is the only effect left. U
fortunately, we cannot provide a quantitative theory
present convincing numerical results of exploratory calcu
tions performed in the short transient region which co
refine Eq.~14!. We accept the form of Eq.~14! as the sim-
plest approximation. One may argue that the minimal va
of the coarse-graining length scale« which provides accurate
enough results for the fractal dimension of the syste
should vary as the smallest~largest negative! Lyapunov ex-
ponent. In this case we can replacelmax by 2lmin . In Fig. 4
we show the simulated and the calculated dissipation dif
ence curves for one of the systems. The latter curves w
determined using Eq.~14! with both lmax and2lmin . From

FIG. 3. The running integral of the exponent in Eq.~7! for the
~107-108! pair and the linear fitted to the second half of the cur
Despite the seemingly noisy character of the curves shown in
previous figure, with the exception of the short initial part, the fit
hardly distinguishable from the running integral.
ls
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our earlier calculations for the smallest system we obtai
the lmax54.3 value. From the conjugate pairing rule (lmax
1lmin52^a&) we can determinelmin @17#.

In Table I we present the results of the calculations us
the data shown in the figures. Values of the simple separa
scheme are also shown for comparison. We also calcul
the integral between the overshoot curves and the long-t
averages to correct for the obvious failure of this crude
proximation. Results using Eq.~14! take into account the
effect of the overshoot automatically. Because of its la
first maximum, the smallest system provided a large che
cal potential by this method. The rest of the data indicates
increase of a little more than unity over the equilibriu
chemical potential.

V. CONCLUSIONS

We have investigated a possible approach to derive c
putationally feasible chemical potential analogs for NEM
model liquids in order to be able to simulate phase coex
ence in NESS systems. We argued that minim
dissipation-type criteria are unsuitable as markers for
purpose. In the derivation we exploited the analogy with

.
e

FIG. 4. Separation of the transient from the steady-state co
bution using Eq.~14! with lmax and2lmin . The long-time dissipa-
tion difference value of 6.49~shown as a line parallel with thex
axis! has been calculated from the fit of a straight line to t
previous figure ~108-107 particles!. Functions for the linear
terms, 3@(N11)^a&N112N^a&N#@12exp(2lmaxt)# and 3@(N
11)^a&N112N^a&N#@12exp(lmint)#, respectively, are also
shown.

TABLE I. Change in the chemical potential relative to the sam
system~WCA, N/V50.758,T50.9! in equilibrium. The first col-
umn ~a! refers to the value determined from the simple separa
scheme. The second column~b! shows the value when the integra
under the excess contribution of the overshoot curve was
added. The third~c! and the fourth~d! columns show results using
Eq. ~14! with lmax and2lmin , respectively.

N

DmNESS

a b c d

31-32 0.48 0.96 1.80 1.60
107-108 0.78 0.95 1.22 1.02
255-256 0.58 0.68 1.21 1.00
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PRE 60 5527TOWARDS A COMPUTATIONAL CHEMICAL POTENTIAL . . .
Widom or test-particle method of equilibrium simulations
Following this approach, we found two different ways

prescribing the numerical recipe. The first approach is rela
to the Kawasaki formalism of Evans and Morriss and rel
on the norm-preserving property of this function. The info
mation is collected from the transient region of the switch-
experiment. The other possibility is to consider the mode
NESS and determine the relative phase-space volume
insertion attempts. We showed that in the latter method
cannot get an exact answer without computing many-part
correlations. However, it can be used for approximate ca
lations. In this respect, the lack of NESS data prevents
from estimating the accuracy of the method.

We performed representative calculations for the che
cal potential analog determined from the transients of
switch-on experiment. The essence of this technique is
estimate the relative phase-space contraction of theN- and
(N11)-particle NESS systems. To be sufficiently accur
the calculation requires numerous transient trajectories. S
the real problem is the separation of the transient contr
tion ~which indicates the difference in dimensional contra
tion! from the steady state one. For this purpose we app
-

s.
,

-

e

d
s
-
n
n
of
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le
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i-
e
to

e
ll,
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an intuitive method of separation based on the Maxw
model of linear viscoelasticity.

The results seem sensible but cross-checks might be
essary to test the accuracy of the method. Unfortunately,
know of no simpler models as replacements of our ma
particle NEMD systems. At present there is no simple m
which could be used for such a purpose@18#. Having only
two or three particles in the NEMD model in order to allo
a thorough numerical study might be a way for determin
other partial derivatives of the entropy such as tempera
or pressure. However, in the case of the chemical poten
the derivation does not permit such extremely small sys
sizes.
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